# Drawing a sphere's normals

A while back I had to generate an image with the normals of a spheroid.

Normal maps are used to store normalized vector information in a pixel. Very useful to calculate lighting effects in 3D engines.

A normalized vector is a vector of length == 1.

## How it's done?

<canvas id="canvas" width="256" height="256"></canvas>


And define some basic helper functions

function distance(xa, ya, xb, yb) {
return Math.sqrt((xa - xb) * (xa - xb) + (ya - yb) * (ya - yb))
}

function normalizeVector(vector) {
// a normalized vector is a vector of length 1.0
// we get the length of 1 by dividing the whole
// vector by its magnitude

// the magnitude of a vector V is the distance from (0,0,0) to V

var length = Math.sqrt(vector[0] * vector[0] + vector[1] * vector[1] + vector[2] * vector[2])

if (length != 0.0) {
vector[0] = vector[0] / length
vector[1] = vector[1] / length
vector[2] = vector[2] / length
}

return vector
}


Then define some helpers to access the canvas to draw to

const element = document.getElementById("canvas")
const canvas = element.getContext("2d")
const width = element.width
const height = element.height
const radius = Math.min(width, height) / 2.0

const picture = canvas.createImageData(width, height)
var pointer = 0


The main loop

// for each pixel
for (var x = 0; x < width; x++) {
for (var y = 0; y < height; y++) {
var distanceToCenter = distance(x, y, radius, radius)

var altitude = Math.sqrt(radius * radius * 4 - distanceToCenter * distanceToCenter)

// altitude is NaN when distance > radius
if (isNaN(altitude)) altitude = -radius

var v = normalizeVector([radius - x, radius - y, altitude])

// transform the vector space (-1,1) to pixel space [0,255]
// being {0.5, 0.5} => {0, 0}
picture.data[pointer++] = v[0] * 128 + 128
picture.data[pointer++] = v[1] * 128 + 128
picture.data[pointer++] = v[2] * 128 + 128
picture.data[pointer++] = 255
}
}


Finally, write the image to the canvas

canvas.putImageData(picture, 0, 0)

By On